UPNIC LIFE CHANGING MEDICINE

Use of Oral Ketamine for Analgesia in Palliative Care

Sue Skledar, RPh, MPH, FASHP, UPMC System Carsten Lachell, PharmD Candidate 2016

Reviewed by: Pain Management Advisory Group and Pharmacy Workgroup

Ketamine: Background

- UPMC formulary agent for the following approved indications:
 - FDA-approved indication as an anesthetic agent
 - Off-label approval for analgesia, in sub-anesthetic doses
 - Restricted to prescribing by:
 - Acute Pain: Acute Interventional Perioperative Pain Service (AIPPS) or Anesthesiology Service
 - Opioid refractory pain: Palliative Care Service
 - Refractory complex regional pain syndrome: Chronic Pain Service
- Mechanism of action:
 - Fast-acting general anesthetic that works by inhibiting NMDA receptors and interacting with opioid receptors, monoaminergic receptors, muscarinic receptors, and voltage-sensitive calcium channels¹
- 2015 UPMC Formulary Request:
 - To be used orally for analgesia in the palliative care setting

Pathophysiology of Pain

- Pain sensations begin in the periphery of the nervous system²
 - Pain stimuli are sensed by specialized nociceptors that are the nerve terminals of the primary afferent fibers
- Pain is categorized as being either nociceptive, neuropathic, psychogenic or muscle pain²
 - Nociceptive: pain from a noxious stimulus, usually due to tissue damage
 - Neuropathic: pain that arises from abnormal neural activity secondary to disease, injury, or dysfunction to the nervous system
- Ketamine binds to the phencyclidine (PCP) binding site of the NMDA receptor³
 - This inhibits excitatory neurotransmission producing analgesia
 - At higher doses ketamine produces general anesthesia
 - Opioid-sparing effects

3 2. Mayo Clin Proc. 1994 Apr;69(4):375-83.
3. Ketamine Hydrochloride [package insert]

Current Analgesia Treatment Options for Palliative Care Patients

- Non-opioid analgesics⁴
 - acetaminophen, aspirin, NSAIDS
- There are a subset of patients that are refractory to large doses of nonopioid analgesics⁴
- Other agents studied for treatment of refractory pain⁴:
 - Barbiturates
 - Opioids
 - Neuroleptic agents (control hallucinations)
 - Parenteral ketamine

Ketamine Prescribing Restrictions

Prescribing

- Ketamine Package Insert Precautions³:
 - "Ketamine should be used by or under the direction of physicians experienced in administering general anesthetics and in maintenance of an airway and in the control of respiration"
 - Resuscitative equipment should be ready for use
 - "Emergence reactions have occurred in approximately 12% of patients"

Current UPMC Policies Involving IV Ketamine

Policy	Subject	Who Can Prescribe	LIP (Other)
HS-HD- CP05*	Moderate sedation	Anesthesiologists, CCM physicians, ED physicians	 If: Current ACLS or ATLS certification Be immediately available Responsible for treating airway compromise, overdose, HD instability, CP distress Cannot be actively involved in procedure Have training and ability to rescue a patient from general anesthesia
HS-HD- CP06*	Deep sedation	Anesthesiologists, CCM physicians, ED physicians Cannot have other role in procedure aside from sedation/airway/HD monitoring and care	 If: Deep Sedation Competency completed Current ACLS or ATLS certification Be immediately available Responsible for treating airway compromise, overdose, HD instability, CP distress Cannot be actively involved in procedure Have training and ability to rescue a patient from general anesthesia

*Policy denotes that it does not apply to medication administered for pain control, seizure control, sedation for mechanical ventilation, minimal sedation, and emergency intubation or other life/limb-saving emergencies.

LIP = licensed independent practitioner; ACLS/ACTS = Advanced Cardiac Life Support or Advanced Trauma Life Support certification; HD = hemodynamic; CP = cardiopulmonary

Author, Year, Study Design	N	Patient Population (age±SD) P= 0.288	Treatment: All patients received 80-90 mg of PO Morphine QD plus:	Efficacy Outc (0-10 scale)	omes	Safety Outcomes: ADEs
				VAS Scores before PO morphine	VAS Scores after study drug	
Lauretti et al. 1999, RCT_single	60	Control Group 60 ±14	PO 20 mg morphine BID (control group) n = 15	Control Group: 7.6 ± 1.9	Control Group: 3.9 ± 2.6	 Patients in the nitroglycerin and ketamine group reported less somnolence (p < 0.013), constipation, and N/V. There were two hallucinations reported in the ketamine group
blinded Grade: 1B		nitroglycerin Patch 52 ± 13	OR nitroglycerin patch 5 mg QD n = 15	nitroglycerin 7.9 ± 1.6	nitroglycerin 3.5 ± 1.7	
Patient population: cancer patients		ketamine 56 ± 8	OR PO .5mg/kg ketamine BID n = 15	ketamine 7.4 ± 1.5	ketamine 3.3 ± 1.6	
		dipyrone 53 ±11	OR PO dipyrone 500mg QID n = 15	dipyrone 7.6 ± 1.7	dipyrone 4 ± 1.6	
				p = 0.774	P = 0.967	
		Summary: Low effective as co-	dose ketamine and trar -adjuvant analgesics.	nsdermal nitrogl	ycerin are U	PMC LIFE CHANGING MEDICINE

Time (days)	Control Group (Daily PO morphine consumption)	Morphine + Ketamine group (Daily PO morphine consumption)	P-value
1	81 mg	81 mg	NS
5	81 mg	81 mg	NS
10	85 mg	77 mg	NS
15	120 mg	77 mg	P=0.036
20	130 mg	73 mg	P= 0.004
30	132 mg	74 mg	P=0.003

These data were extrapolated from a graph: it shows the daily consumption of PO morphine on days 1, 5, 10, 15, 20 and 30 after the test drug was introduced. Overall, patients treated with ketamine required less morphine than the control group.

Author, Year, Study Design	N	Patient Population (age±SD)	Treatment	Safety Outcomes
Ishizuki et al		G1: 59.3 ± 14.6	G1: n=15, PO morphine 10 mg	The majority of patients in
2007,			q6h + PO ketamine 10 mg	both groups reported side
RCT double blinded	30		q8h	effects in
Grade: 1B		G2: 59.2 ± 12.9	G2: n=15, PO morphine 10 mg	every appointment (somnolence,
Patient population: cancer patients			q6h + PO placebo q8h	N/V, constipation)

Summary: There was no statistical difference between both arms in terms of pain relief, number of times the morphine needed to be adjusted and side effects. Dosing of ketamine was noted to be less than what is required for analgesic effect.

Pain Relief in G1 and G2	Week 1	Week 2	Week 3	Week 4
G1 (% of patients who experienced moderate to complete pain relief)	33.4%	44.4%	66.6%	55.6%
G2 (% of patients who experienced moderate to complete pain relief	53.9%	69.2%	69.2%	53.9%
Severity of Pain as	Week 1	Week 2	Week 3	Week 4
Severity of Pain as evaluated by the Verbal Pain Scale	Week 1	Week 2	Week 3	Week 4
Severity of Pain as evaluated by the Verbal Pain Scale G1 (% of patients with moderate to severe pain)	Week 1 100%	Week 2 77.8%	Week 3 77.8%	Week 4 55.4%

These differences were not statistically significant

10 7. ISHIZUKA, Pedro et al. Assessment of oral S(+) ketamine. *Rev. Bras. Anestesiol.*

Meta Analysis: Findings

- "Based on our experience with oral ketamine, this drug should be administered after an intravenous trial to monitor response and side effects in patients with an adequate functional status. However, patients in the palliative care and hospice setting, especially the one at the end of their lives, may also benefit from oral ketamine even if an intravenous trial is not feasible."
- In patients with cancer pain, oral ketamine has been used as an adjuvant therapy in a wide variety of scenarios from patients with refractory pain syndromes with permanent intrathecal devices to patients at the end of their lives
- Most of the studies have failed to demonstrate statistically significant pain relief. However, a study conducted by Lauretti et al did show a significant decrease in opiate consumption on the ketamine group when compared to oral morphine, which is consistent with the previously reported opiate-sparing effect

Dosing and Preparation

- Recommendation: To be used orally for analgesia in the palliative care setting only
- Dosing
 - Recommend an initial starting dose of either PO 0.25mg/kg or 0.5mg/kg adjunctively with an opioid^{6,7,8}
 - For a patient already on ketamine use 25-50% of the IV dose when converting to oral⁹
- Preparation

12

- Dissolving ketamine in water or juice is appropriate¹⁰
- Use a 10 mg/mL injectable solution to prepare the dose
- Dispense in a clearly labeled oral syringe
- *Lauretti GR* Oral ketamine and transdermal nitroglycerin. *Anesthesiology* <u>Pain Physician.</u> 2007 May;10(3):493-500.
 ISHIZUKA, Pedro et al. Assessment of oral S(+) ketamine. *Rev. Bras. Anestesiol.* a strategy for conversion from parenteral to oral ketamine. *Fitzgibbon EJ, Hall P* Kotlinska-Lemieszek A, Luczak J. Subanesthetic Ketamine

References

- 1. Hirota K, Lambert DG. Ketamine: its mechanism(s) of action and unusual clinical uses. *Br J Anaesth*. 1996;77:441-444. Editorial
- 2. Cross, S A. Mayo Clinic Proceedings Volume: 69 Issue: 4 (1994-04-01) p. 375-383. ISSN: 0025-6196
- 3. Ketamine Hydrochloride [package insert].Lake Forest, IL: Hospira; January 2013
- Kobierski, L et al. Hospice Palliative Care Program. Symptom GuideB lines. Fraser Health Authority. 2009 April. Available at: www.fraserhealth.ca/professionals/resources/hospice_palliative_care/ hospice_palliative_care_symptom_guidelines
- 5. Soto E, Stewart DR, Mannes AJ, Ruppert SL, Baker K, Zlott D et al.. Oral ketamine in the palliative care setting: a review of the literature and case report of a patient with neurofibromatosis type 1 and glomus tumor-associated complex regional pain syndrome. *Am J Hosp Palliat Care*. 2012; 29:308-17
- 6. Lauretti GR, Lima IC, Reis MP, Prado WA, Pereira NL Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. *Anesthesiology*. 1999 Jun; 90(6):1528-33.
- 7. Okon, Thomasz, MD. "Pain Physician" Pain Physician N.p., May 2007. Web. 30 Apr. 2015.
- 8. ISHIZUKA, Pedro et al. Assessment of oral S(+) ketamine associated with morphine for the treatment of oncologic pain. *Rev. Bras. Anestesiol.* [online]. 2007, vol.57, n.1 [cited 2015-04-29], pp. 19-31
- 9. Low dose ketamine as an analgesic adjuvant in difficult pain syndromes: a strategy for conversion from parenteral to oral ketamine. *Fitzgibbon EJ, Hall P, Schroder C, Seely J, Viola R.J Pain Symptom Manage. 2002 Feb; 23(2):165-70*
- 10. Kotlinska-Lemieszek A, Luczak J. Subanesthetic Ketamine: an essential adjuvant for intractable cancer pain. *J Pain Symptom Manage* 2004; 28:100-102.

